EP250

Electronic potentiometer

Rev. 1, November 2010

User guide

ComAp

Description

EP250 is a microprocessor controlled device with variable resistance at the output terminals. The value of output resistance is changed by contact inputs, and current value in percent is indicated by LED bargraph located on the front panel. The device is shipped in a plastic box equipped with DIN lock for mounting to the switchboard.

Features:

- Adjustable speed (change of $\mathrm{R}_{\text {out }}$ from 0% to 100%) 5 s to 50 s
- Adjustable init value of $\mathrm{R}_{\text {out }}$ from 0% to 100% with step 10%
- Output resistance ($\mathrm{R}_{\text {out }}$) control by contact inputs INC and DEC, galvanic separated from the internal circuits of the device
- Special contact input for setting init value
- After power on, the init value is set automatically
- Output resistance can be controlled also manually by microbuttons on the front panel
- Current value of output resistance (in \%) is indicated by LED bargraph on the front panel
- The nominal resistance can be simply changed using another resistor module RM250, which is accessible after removing the plastic box.

Usage

The device is designed for application in control and/or regulation systems, where the input to the controlled device is a variable resistance and the output from the controlling device are two binary (contact) signals regulated value "higher" and "lower".
Typical applications are speed governors for combustion engines or voltage regulators for alternators.

ComAp

Technical data

Power supply:	EP250/230V - 230V AC, EP250/24V - 18-30V DC Modules EP250/24V manufactured in 2010 and later have extended supply voltage range to 8-36VDC.
Consumption:	$2,4 \mathrm{~W} / 24 \mathrm{~V}$ DC; $1,8 \mathrm{VA} / 220 \mathrm{~V} \mathrm{AC}$
Power supply for binary inputs:	$18-30 \mathrm{~V}$ DC (8-36V, see note at the power supply voltage)
Common terminal:	positive
Min. pulse length at bin. Inputs	5 ms
Nominal resistance:	RM250 modules in range $120 \Omega-100 \mathrm{k} \Omega$ in series 1-2-5-10
Output resistance step:	$1 / 256 \mathrm{R}_{\text {nominal }}$
Change duration 0 - $\mathrm{R}_{\text {nominal }}$:	adjustable 5-50s in step 5s
Max. load of output resistance:	min. 0,6W
Max. voltage on the output:	150 V
Galvanic separation:	-power supply separated by transformer $(230 \mathrm{~V}$ version only $) 4 \mathrm{kV}$ -inputs separated by optocouplers 2 kV -output separated by relays 1 kV
Degree of protection:	IP20
Operating temperature:	-10 to $+50^{\circ} \mathrm{C}$
Storage temperature:	-40 to $+70^{\circ} \mathrm{C}$
Dimensions $(\mathrm{W} \times \mathrm{H} \times \mathrm{D})$	$106 \times 90 \times 73 \mathrm{~mm}$

ComAp

Wiring diagram

Note to the installation of RM250 module:
To change the module, remove the rear part of the plastic box and the printed circuit board. The module is plugged in this board. When plugging a new one, check the proper orientation! The pinched-off pin must be against to the blocked contact in the connector.

ComAp

Ordering codes for RM modules:

RM250/120R	Nominal Resistance 120Ω
RM250/250R	Nominal Resistance 250Ω
RM250/500R	Nominal Resistance 500Ω
RM250/1k	Nominal Resistance $1 \mathrm{k} \Omega$
RM250/2k	Nominal Resistance $2 \mathrm{k} \Omega$

RM250/5k	Nominal Resistance $5 \mathrm{k} \Omega$
RM250/10k	Nominal Resistance $10 \mathrm{k} \Omega$
RM250/20k	Nominal Resistance $20 \mathrm{k} \Omega$
RM250/50k	Nominal Resistance $50 \mathrm{k} \Omega$
RM250/100k	Nominal Resistance $100 \mathrm{k} \Omega$

Ordering codes for EP250:

EP250/230 V	Power supply 230 V AC
EP250/24 V	Power supply 8-36 V DC

ComAp

DIP sw.	Value	DIP sw	Value
0000	0	0110	6
0001	1	0111	7
0010	2	1000	8
0011	3	1001	9
0100	4	1010	10
0101	5	$1=$ "ON" position	

INIT $($ resistance $)=$ DIP init $* 10(\%$ Rnom $)$
TIME $(0$ to Rnom $)=$ DIP speed $* 5(\mathrm{~s})$

ComAp

1. Init value (start value) setting

Example : R=5K (RM250/5k)

DIP sw.	Value	Rmax $=5 \mathrm{KOhm}[+3 \%,-0 \%]$	LED
0000	0	0	Green
0001	1	500	Green $+1 \times$ red
0010	2	1000	Green $+2 \times$ red
0010	3	1500	Green $+3 \times$ red
0100	4	2000	Green $+4 \times$ red
0101	5	2500	Green $+5 \times$ red
0110	6	3000	Green $+6 \times$ red
0111	7	3500	Green $+7 \times$ red
1000	8	4000	Green $+8 \times$ red
1001	9	4500	Green $+9 \times$ red
1010	10	5000	Green $+10 \times$ red

Notice: After setting DIPswitch push button „INIT" or connect terminal „SET" to 0 V or power supply switching off and on for Init value activation.

Calculation example:

$\mathrm{R}=5 \mathrm{~K} \Omega$; DIP switch value 3

Calc.: Rout/Rout

$=$	DIP init * 10 (\% Rnom $)$	$[$ Ohm $]$
$=$	$(3 * 10 * 5000) / 100$	$[$ Ohm $]$
$=$	1500	$[O h m]$

INC

Push button to increase R out.

DEC

Push button to decrease R out.

